High-Dimensional Mixed-Frequency IV Regression
نویسندگان
چکیده
This article introduces a high-dimensional linear IV regression for the data sampled at mixed frequencies. We show that slope parameter of high-frequency covariate can be identified and accurately estimated leveraging on low-frequency instrumental variable. The distinguishing feature model is it allows handing datasets without imposing approximate sparsity restrictions. propose Tikhonov-regularized estimator study its large sample properties time series data. has closed-form expression easy to compute demonstrates excellent performance in our Monte Carlo experiments. also provide confidence bands incorporate exogenous covariates via double/debiased machine learning approach. In empirical illustration, we estimate real-time price elasticity supply Australian electricity spot market. Our estimates suggest relatively inelastic throughout day.
منابع مشابه
Methods for regression analysis in high-dimensional data
By evolving science, knowledge and technology, new and precise methods for measuring, collecting and recording information have been innovated, which have resulted in the appearance and development of high-dimensional data. The high-dimensional data set, i.e., a data set in which the number of explanatory variables is much larger than the number of observations, cannot be easily analyzed by ...
متن کاملRobust High-Dimensional Linear Regression
The effectiveness of supervised learning techniques has made them ubiquitous in research and practice. In high-dimensional settings, supervised learning commonly relies on dimensionality reduction to improve performance and identify the most important factors in predicting outcomes. However, the economic importance of learning has made it a natural target for adversarial manipulation of trainin...
متن کاملHigh-Dimensional Structured Quantile Regression
Quantile regression aims at modeling the conditional median and quantiles of a response variable given certain predictor variables. In this work we consider the problem of linear quantile regression in high dimensions where the number of predictor variables is much higher than the number of samples available for parameter estimation. We assume the true parameter to have some structure character...
متن کاملHigh-dimensional regression adjustments in randomized experiments.
We study the problem of treatment effect estimation in randomized experiments with high-dimensional covariate information and show that essentially any risk-consistent regression adjustment can be used to obtain efficient estimates of the average treatment effect. Our results considerably extend the range of settings where high-dimensional regression adjustments are guaranteed to provide valid ...
متن کاملRobust Ridge Regression for High-Dimensional Data
Ridge regression, being based on the minimization of a quadratic loss function, is sensitive to outliers. Current proposals for robust ridge regression estimators are sensitive to bad leverage observations, cannot be employed when the number of predictors p is larger than the number of observations n; and have a low robustness when the ratio p=n is large. In this paper a ridge regression esti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Business & Economic Statistics
سال: 2021
ISSN: ['1537-2707', '0735-0015']
DOI: https://doi.org/10.1080/07350015.2021.1933501